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PREFACE 

i 

In the design of phased-array radars, processing equipment and/or 

radar power can be saved if sequential detection (multi-stage statisti- 

cal test) criteria are used.  This Memorandum demonstrates theoretically 

in what sense Wald's sequential testing is optimal.  The study is novel 

in that it shows chat sequential testing is optimal in an Information 

theoretic sense. 

The work was undertaken as basic research in technology applicable 

to the design of electronically scanned radars of potential use in 

ballistic missile defences.  It is part of a continuing study for ARPA 

on low-altitude defer.: t against ballistic miästles. 

Dr. Julian J. Bussgang, co-author of this Memorandum, is President 

of SIGNATRON, Inc., Lexington, Massachusetts, and is a Consultant to 

The RAND Corporation. 
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In this Memorandum some fundamental aspects of multi-stage tests 

of alternate statistical hypotheses are discussed.  Section II is 

devoted to the formulation of the problem and the definition of the 

quantities of interest.  Section III demonstrates certain fundamental 

equalities of the  conditional distributions of the sample size which 

occur in Wald's sequential probability ratio test.  These equalities, 

which to the authors' knowledge have not been noted before, imply that 

the terminal decision is a sufficient statistic for the estimation 

of the true hypothesis regardless of the terminal stage.  In Section IV 

a further consequence of these equalities is demonstrated.  Using 

information theoretic concepts, the rate of transmission of a statistical 

test is defined and a tetst procedure, constructed to satisfy these 

equalities, is shown to minimize this rate.  The information theoretic 

view of an alternate decision problem has been suggested before, but 

(1) only for a fixed sample test. N '  The results in the Memorandum provide 

an alternate approach to the study of the optimallty of multi-stage 

tests of alternate statistical hypotheses and suggest a criterion for 

designing such tests based on the conditional distributions of the 

sample size rather than on the average risk. 

4 
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I.  DEFINITION OF AN ALTERNATE HYPOTHESIS STATISTICAL TEST 

As a general framework for alternate hypothesis statistical 

tests involving a discrete sample we consider that there exists a 

real valued Borel probability measure defined on .& R. where 

R = R, R being the real lin?.. This measure is known up to a 

parameter 9 that can have one of two values.* These values for 6 

form two hypotheses about the measure which are characteristically 

denoted by Hn (the null hypothesis) and H, (the alternate hypothesis). 

Similarly, we shall denote the corresponding measures by M-- and P., 

We assume also that there exist a priori probabilities " and 1-" 

that the met sures are |in and y, , respectively. Each possible 

measure generates a stochastic process, R. or T^ , with elements 

x£ .X. R. called paths, which are sequences of real numbers. 

In an actual statistical test there is some mechanism for 

obtaining numbers called observations. We assume that they can be 

obtained one at a time; obtaining the n— observation will be called 

the n— stage of the test. When the observations are written in 

order x..,...,x  (we call the sequence of observations a sample) they 

represent the first n values of a particular realization or path of 

either the stochastic process Cu  or the stochastic process fL.  A 

multi-stage alternate hypothesis test is a decision procedure that uses 

We consider that the measure underlying the sample is one of 
^ft(9 ■ 0,1) in order to cast our problem as one of parameter 
estimation. However, by parameter estimation we mean more than 
estimating a patinieter that appears in a distributfen function that 
might generate the measure, like the mean of a Gaussian distribution. 
We view the parameter 9 as an index for the two possible values of 
the measure. 
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the sample to determine, subject to certain pre-established probabilities 

of error, to which of these processes the path belongs.  That Is, It 

determines whether the underlying measure is ^n or V-. . 

At each stage of the alternate hypothesis test one of three 

decisions can be made:  that the hypothesis H- Is true, that ae 

hypothesis H. is true or that another observation should be made. 

Trying to achieve maximum generality we impose on these tests only 

two conditions:  that at each stage these three decisions are 

mutually exclusive, and that with probability one the test eventually 

lead'i to the acceptance of one of the two hypotheses. 

Tests will be said to have the same power if they have the 

same error probabilities. The error probabilities are denoted as 

follows: 

Of s probability that R. is accepted when H^ is true 

Ö = probability that H0 is accepted when E. is true 

For any alternate hypothesis test for whic^ a decision is 

made at each stage, the collection of paths that lead to the 

th 
acceptance of HQOO at the n—^ stage  is a cylinder set in jThfküDj. 

This  cylinder set will be denoted by C    I C     1. 

We define 

^QC") UQ  (n)j  = measure of C* {^\ 6-0,1. 

The conditions imposed upon the tests insure that these measures 

are well defined. For all tests of the same power (i.e., to which 

there correspond» a specific pair (a, 9)), we see that under 

the two conditions imposed above 



co » go at- 

^ ^0(n)«l-a, 2^ ^^n)^, £ ^o (n)ma   and Z  ^1 <n>"1-ß- 
n»!        n"l       n"l n"l 

Thus we can define four conditional probability density functions 

pg(n) and PQ (n), 9»0,1. As an example we have 

p**^    C(n)   C(n) 
^Q W  « —a. . m -iL.—. s probability that H- is accepted 

> u**rn^ th L     0 v ' at the n^- stage given that lU 
n-1 

ts the true hypothesis 

Lastly, we term the acceptance of H decision zero, D-, and the 

acceptance of H. decision one, D,. 
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II.  IMPLICATIONS OF THE EQUALITIES p (n) = p^n) and p0 (n) » p1 (n) 

We consider tests of the same power characterized by an (a, Ö) and 

are concerned with the completed tests and the decision to which they 

lead.  For a completed test we have knowledge about two random variables, 

the stage at which the test terminates and whethci- it terminates in 

D or D .  This is the case regardless of what functions of the sample 
u   * 

are used to arrive at the decisions.  By P(H.jü , n) i,j«0,l we mean 

the probability that H is the true hypothesis given that the test 

th 
ended at the n—■ stage with the acceptance of hypothesis j.  The 

probability P(K JD , n) is th^ a posteriori probability of the true 

hypothesis H in a multi-stage alternate hypothesis test.  There are 
8 

four functions of this kind; an example is 

■naP0 (n) 
P(H |D  n) « —j£ £5— (1) 

ncrP0 (n) + (l-rr) (1-3) P1 (n) 

i 

So far we have attempted to portray alternate hypothesis 

tests in their greatest generality; in practice it is ccmmon to use 

a fixed sample or Wald sequential probability ratio test.  In the 

*     •* 
first case, pa(N) ■ p (N) « 1, 9=0,1 where N is the pre-assigned 

9      9 

st. T,e at which the test terminates.  In the latter case the functions 

*       ** 
p (n) and p (n) (1=0,1) n • 1,2..., are generally difficult to 
9        9 

*     ** 
calculate.  Experience indicates that unless the p (n), p (n) can 

9     9 

be obtained trivially, as in a fixed sample test, their calculation 

is a major and frequently unsolvable problem.  It is useful to 

consider when the conditional probabilities that the correct 

decision was made would be independent of the stAge at which the 

-*i*~—-"**»■'—" ■ 
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teslr  terminates.    From the  form of expression (1)   it  is clear that 

this  is the case  i-r and only  if 

****** ^ 
P0(n)  = p^n),  p0  (n)  - p1  (n)     (n -  1,2,...,) (2) 

We have  the  following theorem: 

Theorem 3.1        The a posteriori probability   of satisfying eithe' 

hypothesis  in a multi-stage  test of alternate hypotheses  is  independent 

of the stage at which the  test ended if and only if (2)  is satisfied. 

Proof: 

Sufficiency is obvious from expression (1); for necessity we 

notice that 

** 
pl ^ 
-•JJ  = const. 

P0 (n) 

**       ** 
Since both p. (n) and p (n) are probability measures, the constant 

must be one. 

We employ Theorem 3.1 to demonstrate the statistical sufficiency 

of the terminal decision of an alternate hypothesis test, when the 

test procedure is such that (2) is satisfied and the test is used to 

estimate @. The outcome of a specific test is a random variable 

T which takes on the values JD , nl j ■ 0,1 ; n » 1,2...  . Let T 

be a function of r such that T fT - JD , n} ) - D.•  Statistical 

sufficiency can be defined by the following statement:  (Ref. 2) 

"If the conditional distribution of 9 given X-x depends only on 
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T(x) then T Is a sufficient statistic for 6." Thus in the problem 

of observing the random variable V  and estimating 0, by Theorem 3.1, 

the sUtlstlc T[|D , n|j - D is a sufficient statistic if and only 

if (2) is satisfied. 

It is common to spe^k of a statistic as being sufficient for 

the estimation of a parameter of a stochastic process when the 

statistic is a function of the observations of the process. Here; 

the statistic is a function of both the observations and the test 

procedure which is chosen.  It is clear that when an alternate 

hypothesis test procedure is chosen, and the outcome of this test 

procedure is used as an estimate for the parameter, that considerable 

information about the parameter contained in the observations might 

be lost. The point of view that we take in this Memorandum is that 

we are studying the outcome of a multi-stage alternate hypothesis 

test, and not the composition of the sample. The only utilizable 

information that these tests convey is the decision that they lead 

to. Thus it is important to know when the terminal decision is a 

sufficient statistic with respect to the true hypothesis. The fact 

that (2) Implies sufficiency of the test statistic establishes the 

significance of the equalities (2). 

We now show that (2) is satisfied by the Wald test.  (This is 

also true for a fixed sample size Neyman-Pearson test which satisfies 

(2) as a trivial case.)  Since the Wald test employs the likelihood 

ratio, it is necessary to Introduce additional assumptions on y. 

and JA, to Insure that this ratio exists. The likelihood ratio at 

stage n is a function of the firs.; n observations of a particular 

0 
i 
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sample path 

dnl(x1, x2,..., xn) 

^0  1' X2 '' *' * Xn 

This function exists as a Radon-Nikodym derivative as long as p*   it 

absolutely continuous with respect to nn. 

The Wald sequential probability ratio test is a multi-stage 

test of altt nate hypotheses that continues as long as 

djA.Cx ,..., x ) 
B < Ä—7 \    < A      t^l,  B<1 are const mts)  (3) 

0 1* *'' ♦ Xn 

and ceases with the acceptance of Hn if the left inequality is 

violated and with the acceptance of H if the right inequality is 

violated. 

There is a fundamental approximation used in connection with 

Wald tests that is frequently referred to as "neglecting the excess 

over the boundary". This approximation consists of assuming that 

when the sequential test terminates there is equality at either the 

left side or right side of (3). The approximation becomes exact 

when the sample paths are continuous with independent increment* and 

when the probability density function for the value of each increment 

is continuous. 

It is well known that with this approximation B is taken to 

be -r^— and A is taken to be —-^. 
l-Qf V 

In the  terminology of this Memorandum, Wald's approximation 

consists of saying that for those paLhs which lead to DAD.) at the 

i 
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stage 

dnl(x1,..., xn) 
B 

and that this is true for all n. We will assume that for all paths 

*  ** th 
In C (C ) the likelihood ratio at the n— stage is constant, but 

n  n 

that the constant can be different for each n. Our assumption is 

meaningful whenever Wald's assumption is. Of course since we 

consider more general measures there are cases where the assumption 

will not agree with reality. The following theorem shows how 

important the assumption is and displays some of the special 

properties of the Wald test. 

Theorem 3.2   Assume that 

dMl0(x1,..., xn) 

*     ** 
is constant for all paths in G and C , and consider alternate 

n     n ' 

hypothesis tests in which the function of the observations at the 

stage that is used to perform the estimation is 

du (x .... x ) 
 i i HL. 

^O^l"- ' Xm> 

Then (2) is satisfied if and only if the test is a Wald test. 

Proof: 
JLJL 

Suppose we have a Wald test and (x,,..., x ,...) CC , then 
In      n 
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d^Q(x1,.. ., xn) "  ot 

Integrating over C  we have 

(T 
n C 

n 

so p. (n) = pn (n).  A similar result holds for paths in C . 

let p1 (n) = P0 (n).  Then ^ (n) - —
E ^0 (n). Now 

We write this as 

C    U c 
n 

(5) 

n 

where by x we mean the cylinder set represented by (x ,..., x ,...). 

Since we assume that 

dn0(x) 

is a constant for x£ C , it fellows that 
n ' 

^l(x) _ 1-6 
d^0(x) " a 

for all tests that lead to D at the n— stage. A similar result 

*     * 
holds if p (n) ■ p0(n). Thus the test is a Wald teat and the 

theorem is proven. 

1 
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It la obvious th«t for any alternate hypothesis test of fixed 

sample sUe (2) is satisfied. This shows the importance of the 

assumption of the constancy of the likelihood ratio for proving the 

converse of Theorem 3.2. 

I 

t 

i 

s: 

f; 

feS 
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III.  INFORMATION THEORETIC APPROACH 

By regarding a statistical test of alternate hypotheses as a 

pr blem of transmitting messages over a noisy channel and by defin- 

ing the information rate per decision we are able to provide addi- 

tional insight into the nature of these tests. In particular, we 

are able to interpret the optimality of the Wald test from the in- 

formation theoretic point of view. We first restate the basic 

(3) formalism of information theory. 

Let X, Y and Z be  three discrete random variables which occur 

together and let ix.r i«l,...,   i be tht set of the  / possible 

different values of X "iy. f j"l.*«»i  m be the set of the m possible 

different values of Y and jz.? k«l,...,  n be the set of the n 

possible differen«: values of Z.    Denote the probability of the Joint 

occurence of x.   for X,  y{  for Y and z.   for Z by plx««., Y"y.,  Z-JB. j. 

The joint entropy of X, Y and Z is then defined by 

ljm,n 

H(X.Y,Z)  - - ^       PJJC-X^ Y-yj.  Z-zkj log p[x-xt, Y-yr  Z-J    (6) 

i.j.k-1 

The logarithmic base in this expression and in those that follow 

is the same but is otherwise arbitrary; the choice of the base 

corresponds to the choice of a unit for measuring entropy and is 

usually base 2. A change in the logarithmic base introduces only 

a mutliplicative scale factor which is uf no consequence in this 

work. The joint entropy of X and Y and the entropy of X alone are 

defined by 

\ 
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" HF " -'1 

^^mk 

HCX.Y) » - ^ P [*mxi>  Y-yjJiogPJ^X.x., Y-y^ (7) 
1J-1 

and 

H(X). - ^ P [x-x^logpTx-x^ (8) 
i-1 

in which p|"x-x., Y«y "| is the Joint probability that X=x and 

Y«y and H X-x.1 is the probability that X=x . 

Suppose that an information source can, by some random mech- 

anism, generate one of two messages which are indexed 0 and I. The 

index of the message actually generated at a particular time is 

taken as the random variable X.  The entropy H(X) is said to measure 

the amount of information contained in a message generated by that 

source.  If the information source feeds a noisy channel, the i.eceiver 

at the output of the channel receives the message corrupted by noise. 

The receiver decodes the message, i.e., estimates whether X was 0 

or 1. The estimate of X made by the receiver is the random variable 

Y which has the same two possible values as X.  The entropy H(Y) is 

said to measuie the amount of information generated by the receiver. 

The rate of transmission R(X;Y) is detined as the sum of the amount 

of information generated by the source and the amount of information 

generated by the receiver minus the amount of information common to 

both the transmitter and the receiver 

R(X;Y) » H(X) + H(Y) - H(X,Y) (9) 
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If the channel is so noisy that the variables X and Y are independent, 

H(X,Y)= H(X)+H(Y) and the rate is zero.  If the channel is not noisy 

at all, X Is the same as Y, H(X,Y)- H(X)- H(Y) and R(X;Y) Is equal 

to H(X). In effect R(X;Y) measures that part of Information generated 

by the source that must reach the receiver in order that the receiver 

generate an amount of information HCY). The quantity H(X)-R(X;Y) Is 

called the "equivocation" of X given Y and measures the amount of unwanted 

Information reaching the receiver that Is generated by channel noise. 

Next, these basic concepts of the information theory are applied 

to statistical tests of alternate hypotheses. We have two distinct 

hypotheses H- and H, which occur with a priori probabilities TT and 

l-n. The random variable X is the index of the frue hypothesis so 

that p!x=0j-n and plx»l pl-n. The statistical test can terminate 

with the acceptance of the hypothesis H0 which Is the decision D«, 

or with the acceptance of the hypothesis H. which is the decision D.. 

The random variable Y Is the Index of the accepted decision. If a 

and ß are the specified probabilities of errors, wc have 

a  = phf-lj X=0j and 0 = P[Y-0| X-1J. The particular stage N at 

which the test can terminate Is also a random variable depending 

on the particular sample and on the test procedure. The relevant 

conditional probabilities that the test will terminate at a particular 

stage n are denoted by 

p*(n) - p[N-ni X-0, Y-oJ 

p*(n) - Pi_N-n| X»l, Y-oJ (10) 

pj*(n)- p[N-n| X-0, Y-lj 

pj*(n)- p[N-n| X-l, Y-lJ 
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where n is a positive integer. 

The rate R(X;Y,N) of information per decision, i.e., the amount of 

Information which must reach the receiver in order that the estimate 

Y of X can be achieved with error probabilities a  and ß at the M^ 

stage is, by rzi  extension of (9) 

R(X:Y,N) - H(X) + H(Y,N) - H(X,Y,N) (11) 

The equivocation of X given Y and N, which measures the amount of 

th Information required to estimate Y at the JF^ stage, is 

H(X) - R(X;Y,N) - H(X,Y,N) - HCY.N) 

Substituting in (11) from (6), (7), (8) and (10), we find that 

R(X;Y,N) can be written in the form: 

R(X;Y,N) -QCT) . «J (^^-)   -  (l-QQ^) + G[n.l-a,ß.pJ(a),p*(n)] 

+ G[TT,a,l-e,p^(n).pf (n)] (12) 

in which Q(t) - -t log t-(l-t/ iOg (1-t), Ci - (l-a)n + e(l-TT) and G(-) 

is a function expressing the dependence of R(X:Y,N) on the terminal 

stage, 

G[TT,l-a',B,P0(n),p1(n)1 - 

- [ ^ '>> + ^ ">] l08 [ ^ po(n) + ^ ^ 
n-l 

+ il^in pJ(n)  log p*(n) + ftüjSi p*(n)  log p*(n) (13) 

The sum of the last two terms in (12) is in effect R(N;X|Y). 

-■ ^ ■ ■ - ■ ■■    TJ'J^l 

m 
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Each term of the summation in (13) is of the form -l(g,t.+g^t-) 

+ g1»(t1)+g2#(t2) whe.e g^.g^O.g^gj-l and ♦(t)-tlogt is a 

continuous convex functic i. We assume that Qf<\  and B<^ so that 

g^.+g^t lies between t and t..  It follows that each such term 

is strictly positive and is zero if and only if Pn(n) - p.Cn) and 

p (n) ■ p (n) for all n. When a test procedure is used such that 

both of these conditions are satisfied, the minimum value of 

R(X;Y,N) over all possible tests of power (#, 0) is achieved and 

we have 

Min R(X;Y,N) - Q(TI)-0  Q^ ") " (^Q^ ")      (W) 

- H(X)-H(X|Y). 

An alternate form (14), obtained by rearranging the different term«, 

is 

Mln R(X;Y,N) - Q(n)-TT Q(l-cr)-(l-TT)Q(e) 

- H(Y)-H(Y|X). 

These results are expressed in the following theorem: 

Theorem 4.1   Among all the procedures for conducting a statistical 

test of alternate hypotheses, the procedure which is designed to 

A       It iHt #* 
satisfy the conditions p0(n) - p^n) and po (n) - p (n) for all n 

requires the minimum rate of information to attain the desired 

probabilities of error a *nd ß for any a priori probability TT and 

1-TT. This minimum rate is given by (14). 

MhM £  
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Corollary 4.1   For a sample consisting of Independent and identically 

distributed variables, the Wald test requires the least rate of infor- 

mation to attain the desired probabilities of error a  and ß for any 

given a priori probabilities rr and 1-rr. 

This Corollary follows from tha fact that by Theorem 3.1 the 

Wald test satisfies the conditions of Theorem 4.1. 

An Interesting qualitative argument can be based on Theorem 4,1. 

It is plausible to s"ppose that the amount of information In a sample 

Is a monotonlcally Increasing function of the average sample sl:e. 

This assumption together with Theorem 4.1 implies that the test pro- 

cedure designed to satisfy the conditions of Theorem 4.1 requires, on 

the average, the smallest average sample size to provide a statistical 

test with the power (er, ß) . 

The result (14) also implies this additional Theorem: 

Theorem 4.2   When the test procedure Is designed to satisfy the 

conditions Pn(
n) ■ ?,(") and p (n) = p. (n) for all n, the rate of 

transmission R^YjN) dees not depend on the terminal stage N. 

Proof: 

We observe by writing out R(X;Y) in terms a  and ß that 

Mln R(X;Y,N) - R(X;Y). 

This theorem Is a complementary result of the notion of 

sufficiency discussed in the previous section.  Another result which 

Is less obvious can be stated in the form of the following Theorem: 

Theorem 4.3   Consider two different test procedures which have 
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probabilittes of error less than 0.5.  If these test procedures 

require the same rate of information per decision [but only one 

procedure Is designed to satisfy (2)"1 the procedure that satisfies 

(2) cannot have probabilities f error (a, ß) both larger than the 

corresponding probabilities of error of the other test.  This holds 

for any a priori probabilities n and 1-rt. 

Proof: 

Let o' and 3' be the probabilities of error of the first and 

second kind of the test that satisfies (2) and ^ and ß the corres- 

ponding probability of the other test. The infonnation rate per 

decision of the tect that satisfies (2) is by (14) 

Q(TT) - P^f-^-Vci-n^Q^^) 

in which 

P' - (l-a
/)TT+ 0'(1-TT) 

The information rate of the other test is given by (12).  Since 

both rates are assumed to be equal and the G(*) functions are 

positive, we must have 

Q(TT) - o Q^ TT) - (l-o)Q^ TT) <Q(IT).0'Q^*1 ^ (1.n0Q^/TT) 

(15) 

Suppose we assume that 

0.5 > a' * a 
(16) 

0.5 > B' 2 e 
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Thls assumption implies the following inequalities (see Fig. 1) 

<ii^^^n<n<^n.T?-n<1 

for any 0 < TT < 1, Let P , P', P, P' P_ be the points on the curve 

y - Q(t) corresponding to (l-crMp, (l-a'/)n/o/, TT, «^/(l-oO, 

c/n/l-O-     Since Q(t) is continuous, concave and non-linear, the 

chord P' P' lies above the chord r.P0 except when both equality 1    2 12 

signs in (16) hold and the chords coincide.     Suppose R and R' 

are the points on the chords P^« and P' P' corresponding to t-n. 

Then P lies above R' and R'  lies above R except when era' and 

3*0',   in which case  R and R' coincide.    Let PR be the distance 

from P to  R.    The  inequality  (16)   therefore  implies PR 2s PR'. 

But the left-hand side of (15)  is the distance PR and the  right- 

hand side of (15)  is the distance PR'.     Ihus (15)  represents the 

inequality PR < PR' which therefore cannot be acaleved under 

condition (16).     Conversely  the  inequality  (16)  contradicts  (15). 
y=0(t) 

l-o 
1-ß      1-ß 

-fr>t 

Fig.   i--oeonw itrical Relationships for the Proof of Theorem 4.2 

^■-t^jT 

J. B 
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IV.  CONCLUSIONS 

It is important to notice the difference between the usual 

communication problem and the decision problem.  In the communication 

problem the channel is specified, and one desires to uiaximire the 

rate of transmission. This is achieved through the coding of messages 

which is said to match the information source to the channel.  The 

maximum r&te of transmission (with respect to all the admissible 

sources) that can oe achieved for a particular channel is known as 

the capacity of the channel. By contrast, in the decision problem 

the experimenter assumes a priori the hypotheses HQ  and H^, but 

not the test procedure; thus the information source rather than the 

channel is specified. The test, procedure (i.e., the tt>t statistic 

and the decision regions) that plays the part of the channel can be 

chosen by the experimenter. The probabilities of error determine 

the amount of information which must ^e generated by the receiver. 

The relevant design problem is now to select that test procedure 

that requires least information to complete the test, i.e., that 

minimizes the rate of transmission. We might consider this as the 

problem of matching the channel to the source. 

We find that the Wald test not only minimixes the average 

risk but also minimizes the rate of transmission independently of 

the a priori probabilities. The proof of the optimallty of the 

Wald test in the sense of minimum average risk applies only to the 

alternate hypotheses tests on Identically distributed, Independent 

samples.  ' It is suggestive to apply the Theorem 4.1 to the 

design of multi-stage statistical tests of alternate hypotheses 
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even in the case of correlated and non-identically distributed 

observations by requiring that the test procedure be const ruetert 

to satisfy (2).  This rule of construction would determine the 

boundaries of the proper decision regions which need not be parallel 

lines.  Another extension of Theorem 4.1 applies to the design of 

multi-stage statistical tests of multiple hypotheses where by 

analogy to the case of two hypotheses, the optimum decision rule 

would be specified by the relevant equalities among conditional 

probabilities at each stage. 

: 
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